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Halide perovskite semiconductors have emerged as promising candidates for the next-generation low-energy
consumption, high-flexibility photonics and optoelectronic devices thanks to their superior optical and
excitonic properties as well as fabrication convenience. This special issue, including three review papers and
six original research papers, focuses on the studies of both fundamentals and applications of perovskite photonics,
covering materials, excitonic properties, nonlinear optics, strong light–matter interactions, and optoelectronic
devices. © 2020 Chinese Laser Press
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In 2009, metal halide perovskites that combine both advan-
tages of inorganic and organic semiconductors revived as sen-
sitizers in solar cells (SCs) with a power conversion efficiency of
3.8%, which opened a booming decade for perovskite photon-
ics and optoelectronics [1–6]. Up to now, the conversion effi-
ciency of perovskite SCs has increased dramatically to over 25%
[7]. The outstanding excitonic and optical properties of perov-
skites, including the large absorption/emission efficiency, high
defect tolerance, long-distance carrier diffusion, and the low-
cost fabrication process, also make them promising for light
source and detector applications. The perovskite light-emitting
diodes (LEDs) can be traced back to the 1990s [8]. In 2014, a
room-temperature perovskite LED was realized by Tan et al.
with an external quantum efficiency of only 0.1% [9], and until
now the efficiency has been promoted to over 20% in green and
red bands [10,11]. In 2014, the first room-temperature micro-
laser was realized using organic–inorganic hybrid perovskite
nanoplatelets [12], and then perovskite lasers including polar-
iton lasers, vortex lasers, and plasmonic lasers were developed
rapidly thanks to the high optical gain [13–19]. Lately, the
continuous-wave optically pumped perovskite microlasers
and distributed feedback lasers have been reported [20–23].
Perovskites are also employed as active layers in high-efficiency,
polarization-sensitive photodetectors [24,25] and X-ray detec-
tors [26,27], which is benefitted from large absorption coeffi-
cients for both visible and X-ray spectral ranges as well as high
carrier mobilities. Meanwhile, the perovskite nanocrystals can
be used for a single-photon light source [28]. For example, a
coherent single-photon source was recently reported with a

coherence time as long as 80 ps [29], which is very promising
for quantum communication applications based on large-scale
solution-processed single-photon sources. In particular, perov-
skites have been an ideal platform to investigate the strong
light–matter interactions toward room-temperature polaritonic
devices working within a wide band spectrally covering from
the ultra-violet to the visible range [17,20,21,30–34]. In
2017, Su et al. reported the first room-temperature polariton
lasing in a planar perovskite cavity [17], and later in 2019, they
observed the room-temperature exciton polariton condensation
in a perovskite lattice [32]. In 2018, Zhang et al. reported the
exciton polariton in low-dimensional CH3NH3PbBr3 nano-
wires with a Rabi splitting energy of 390 meV [33], which
was then promoted to 564 meV by Shang et al. through adopt-
ing the metal–insulator–semiconductor hybrid structure [34].
The studies on exciton polaritons of perovskites have benefitted
from the development of low-threshold perovskite microlasers
[20,21]. Given the complex framework of the whole perovskite
photonics, this special issue aims to provide a journey through-
out the fundamentals and applications in this field, and to
present the prospects of this future semiconductor material.

Parameter verification is the first step to exploit a material.
Excitons, one type of photoexcitation near the optical band
edge, play an important role in the core physical processes
of semiconductor photonic devices, such as optical transition,
charge transfer, and strong exciton–photon coupling [35,36].
For three-dimensional perovskite materials with organic–
inorganic hybrid characteristics, the long-standing controversy
regarding exciton parameters, especially exciton binding energy

Introduction Vol. 8, No. 12 / December 2020 / Photonics Research PP1

2327-9125/20/120PP1-04 Journal © 2020 Chinese Laser Press

mailto:Q_zhang@pku.edu.cn
mailto:Q_zhang@pku.edu.cn
mailto:Q_zhang@pku.edu.cn
mailto:Carole. Diederichs@phys.ens.fr
mailto:Carole. Diederichs@phys.ens.fr
mailto:Carole. Diederichs@phys.ens.fr
mailto:Carole. Diederichs@phys.ens.fr
mailto:qihua@ntu.edu.sg
mailto:qihua@ntu.edu.sg
mailto:qihua@ntu.edu.sg
https://doi.org/10.1364/PRJ.413229


ranging from a few meV to nearly 100 meV, has promoted
scientists to carry out relevant researches from an in-depth and
comprehensive perspective [37,38]. A new report conducted by
Baranowski et al. has measured the exciton parameters of
CsPbCl3 through high magnetic field spectroscopy at 2 K, in-
cluding exciton binding energy (64 ± 1.5 meV) and effective
mass (0.202 ± 0.010 of the free electron mass) [39]. The mea-
sured results are consistent with the theoretical calculations,
showing that the exciton binding energy and effective mass in-
crease with decreasing halide atomic number. In addition, the
permittivity decreases with lighter metal and halide atoms.
These results prove the promising future for CsPbCl3
as optoelectronic and polaritonic devices, especially in the violet
and ultra-violet spectral ranges.

Modification and optimization are the second promotion.
One of the origins of perovskite fever is the rich combination
of cations and anions, where the cation candidates include vari-
ous metal or organic cations while the halide anions can be
easily tailored to obtain different bandgaps [40]. Furthermore,
the emergence of layered perovskites with mixed dimensional-
ity has combined valuable properties between those of two-
dimensional and three-dimensional systems [41–43], featuring
multiple quantum well nature and dielectric confinement. In
addition to material, combining with cavity engineering also
paves the way to fundamental photonics and practical devices.
Four essays in this feature issue focus on mixed organic cations,
mixed halide anions, two-dimensional perovskites, and perov-
skite-based plasmonic metasurface, respectively. Mixing halide
anions has been an ordinary way for bandgap tuning and lattice
stabilization in perovskites; however, the phase segregation
under external stimuli (e.g., illumination) is detrimental to
the device performance [44]. To provide an insight into this
issue, Wang et al. review the phase segregation phenomena
and possible mechanisms in inorganic mixed-halide perov-
skites, including thin films and nanocrystals [45]. In addition,
the mitigation methods are also overviewed, i.e., compositional
tuning, morphology engineering, and trap passivation. Another
review by Zhang et al. focuses on the 2D counterpart, especially
the cavity engineering and light–matter interaction in those 2D
perovskite microcavities [46]. 2D perovskites are layered mate-
rials in which an inorganic metal-halide octahedron layer is
sandwiched by two long-chain organic layers. Zhang et al. first
introduced the unique properties of 2D perovskites that re-
sulted from the inherent quantum well structure, and then
summarized the fabrication methods, followed by exciton–
photon coupling, photonics lasers, and a variety of other
function devices in different cavity configurations. This review
gives a general view of 2D perovskites and would promote
the future development of this field. Zhang et al. studied
the nonlinear effects in MA1−xFAxPbI3 [MA � CH3NH�

3 ,
FA � CH�NH2��2 ], i.e., two-photon absorption and saturable
absorption. As the pump power increases from 1.0 GW · cm−2

to 3.0 GW · cm−2, a conversion from two-photon absorption
to saturable absorption is observed from the Z -scan results,
which is confirmed by transient absorption and power-depen-
dent transmission spectra. With increasing x, i.e., the FA com-
ponent, the nonlinear absorption coefficient decreases,
accompanied by an increased saturation transmission intensity.

The effect of organic cations results from weaker electron cloud
distortion of Pb2�, which is attributed to larger unit cell expan-
sion and more hydrogen bonds for larger x [47]. Moreover, Lu
et al. investigate the formation of exciton–photon polaritons
and exciton–surface plasmon polaritons in perovskite-based
subwavelength lattices with different thicknesses. From a theo-
retical discussion, the configuration sustaining strong light–
matter interactions is considered to concurrently allow excep-
tional points with enhanced local density of states and a quasi-
bound state in the continuum with negligible nonradiative
losses of the dark mode [48].

Device applications in light harvesting and light source field
have continuously fueled the rapid development of halide per-
ovskite photonics and optoelectronics, in parallel with active
research in the fundamental optical physics related to
excitons and their dressed states with light. A wide range of
devices have been demonstrated in solar cells, LEDs, lasers, am-
plifiers, displays, photodetectors, etc. [10,11,24,49–53]; none-
theless, there are still pending scientific and technological
questions concerning large-area device fabrication, device sta-
bility, as well as the high-performance device. In this issue,
Zhao et al. review the fabrication methods of large-area perov-
skite SCs (area larger than 1 cm2) [54], such as spin-coating,
blade-coating, and inject printing. In addition, they summarize
the common strategies to improve the quality of large-area per-
ovskite films, including engineering the precursor solvent and
additives. Furthermore, the fabrication of the large-area charge
transporting layer is also discussed, e.g., utilizing Bifluo-
OMeTAD in place of Spiro-OMeTAD as HTL to circumvent
the difficulty of large-area spin-coating. Although large-area
SCs are harnessed by an efficiency lower than 20%, this review
concludes with a clear direction ahead. Meanwhile, PTAA has
been a conventional HTL in perovskite SCs. Its good
hydrophobicity improves the device stability, but hinders the
spin-coating process of perovskite precursors as well. Li et al.
demonstrate a two-step solvent post-treatment to PTAA
with DMF and toluene to improve the hydrophilicity and mor-
phology of PTAA surface, on which the spin-coated perovskite
layer shows better crystallinity [55]. As-fabricated inverted per-
ovskite SCs exhibit a high efficiency of 19.13%, and a good
stability of maintaining 88.4% of the initial PCE after 30 days
in air. Beyond intrinsic photovoltaic properties, Mica et al. ex-
plore the potential of Cs0.06MA0.15FA0.79Pb�I0.85Br0.15�3 SCs
for visible light communication [56]. These triple-cation
perovskite SCs exhibit great energy harvesting performance
with PCE up to 21.4%. After the SCs are embedded into
the circuit, the ability to collect data is measured for SCs with
thicknesses from 60 to 965 nm, and a record high data rate of
56 Mbps for perovskite photodetectors is observed. A further
discussion on bandwidth stresses the role of RC time constant,
and the optimization of thickness is necessary considering the
data rate and bandwidth concurrently. An extra emphasis by
Liu et al. is placed on the upconversion lasing in CsPb2Br5 mi-
croplates with single-mode operation, high quality factor
(∼3551), and imperceptible color shift (<0.1 nm) [57]. The
net optical gain of CsPb2Br5 microplates is quickly established
in less than 1 ps and persists more than 30 ps, and the net gain
for stimulated emission demonstrates a high characteristic
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temperature of 403 K, providing another all-inorganic platform
for high-performance perovskite lasers beyond widely used
CsPbBr3.

In summary, this special issue presents some frontier works
that give a glimpse of the inspiring advances in the field of per-
ovskite photonics, including fundamental investigations, opti-
mization explorations, and application achievements. Finally,
we would like to thank the editorial team from Photonics
Research for the opportunity to edit this special issue. We
are also sincerely grateful to all the authors for their outstanding
contributions and the referees for their valuable comments that
helped to improve the articles in this special issue.
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